
Improving
Robotics with
Safety-Critical
Virtualization

Group #4

Faculty Advisor: Dr. Azim
Capstone Coordinator: Dr. Mahmoud

Anthea Ariyajeyam 100556294
Alex Motyka 100582888
Kalev Gonvick 100582575
Erin Rutkowski-jones 100587683

What’s our project?

Main goal: improve robotics which implement both safety-critical and non-safety-critical

functionalities

Why is this useful?

● Embedded systems are increasing in functionality
○ Greater range of responsibilities (ie. both safety-critical and non-safety-critical)

● Incorporating safety-critical and non-safety-critical functions in the same environment

creates the risk of interference

2

Stakeholders & Their Requirements

Stakeholders: Developers & Public (users of the systems)

Requirement Details

Performance
● Able to support multiple functionalities without decreased

performance
● Enhance or have equal performance compared to existing operating

systems

Safety & Reliability
● Provide safety-net protocols that allow the system to be safely shut

down in the event of system failures
● Perform both safety-critical and non-safety critical tasks without

causing any interference
3

Objectives

Original Objectives:

● Improve Performance & Reliability

● Provide Easier alternative for

programming robots

● Demonstrate improvements with

an autonomous wheelchair

test case + compare

Modified Objectives:

● Improve Reliability and Safety

● Improve Performance

● Provide Easier alternative for

programming robots

● Demonstrate improvements with a robotic test

case + compare

4

Final ACRN Design

5

Physical Testing Configuration

6

Test Cases

7

Test Case
Number

Test Case Goal

1 Controlling Turtlebot Remotely via

ROS Keyboard Teleop

Control the robot manually from a remote

computer to move it six feet forward

2 Controlling Turtlebot Remotely via

Web Application
Control the robot manually from a remote web
application to move it

3 Completing a Basic Route

Autonomously
Control the robot using a script that
sequentially publishes multiple repetitive
forward, left, and right commands in order to
make the turtlebot navigate safely through an
obstacle course

Demonstration

8https://www.youtube.com/watch?v=Q18-37-W1OE&feature=emb_logo

http://www.youtube.com/watch?v=Q18-37-W1OE
https://www.youtube.com/watch?v=Q18-37-W1OE&feature=emb_logo

Test Results: Hypervisor Solution

9

Test Case Fork Bomb? Average Time (seconds) Additional Comments

Keyboard Teleop Present Passed (avg. 12.8s) For the second case the
UOS started to system
hang.

Not Present Passed (avg. 12.83s)

Webcontroller Present Passed (avg. 12.93s)

Not Present Passed (avg. 12.97s)

Autonomous Present Passed (avg. 12.37s)

Not Present Passed (avg. 12.16s)

Test Results: Traditional Setup

10

Test Case # Fork
Bomb?

Average Time
(seconds)

Additional Comments

Keyboard
Teleop

Present ⅔ Failed Stalled at times or did not complete the task

Not Present Passed (avg. 13.18s)

Webcontroller Present ⅔ Failed Stalled at times or did not complete the task

Not Present Passed (avg. 13.38s)

Autonomous Present 3/3 Failed Either crashed or stalled

Not Present Passed Collision occurred

Test Summary

● The hypervisor solution always completed its task without performance hits

● The hypervisor doesn’t restrict us when using ROS

● The laptop was unpredictable when a fork bomb was executed
○ Sometimes the bot would either stall, stop or spin
○ A crash was inevitable

● The hypervisor solution was actually performing faster when the UOS crashed

11

Main Challenges Faced

● No support for our hardware
○ Our board was APL UP2 (UEFI)
○ They only support APL UP2 (SBL)
○ Solved by going through source code instead of looking at their documentation

● Preparing for different scenarios
○ Mirroring projects made with ROS in a new setup for the different virtual environments
○ Solved by many iterations of test case designs

● Hardware limits on I/O
○ We are limited by a certain amount of USBs between the different operating systems
○ USBs are segmented across the board during runtime of both operating systems
○ Solved by showing test scenarios that require the least amount of user input

12

Main Challenges Faced Cont.

● ROS modifications
○ Service VM used Ubuntu 18.04 with ROS melodic, and does not support Turtlebot 2
○ The User VM used Ubuntu 16.04 with ROS kinetic
○ Modifications needed to be made to ROS melodic in order to communicate between each other
○ Kobuki Yujin Robot (Turtlebot 2’s main communication driver) had to be changed the most

13

Further Research

● More robust performance testing
○ Run a robotic system with multiple components
○ Would provide a more in depth test scenario for the hypervisor
○ Compare hypervisor against non-hypervisor solution

● Test with Zephyr
○ Used to run real-time robotics

● Test compatibility with other Common Linux Development Kits
○ R+, Arduino

14

Conclusion

● ACRN used to create a safety-prioritizing system

● ACRN modified to work with UP2 board ($400) instead of NUC ($800)

● Tested and confirmed to protect service OS from user OS crashes

● ROS successfully integrated → easy to deploy in existing systems

15

Questions

16https://youtu.be/XOe2sJLMD1c

https://youtu.be/XOe2sJLMD1c

Resources

Images:

https://www.picpedia.org/highway-signs/r/research.html (further research slides)

17

https://www.picpedia.org/highway-signs/r/research.html

