

Saravanaa Kesavan

Off-the-grid Photovoltaic Inverter for Residential **Applications**

Faculty Advisor: Coordinator:

Dr. M. Youssef Dr. Q. Mahmoud

Content

- Introduction and Problem Identification
- Marketing and Engineering Requirement
- Scenarios
- Design Process
- Cost
- Code
- Testing
- Demo Video

Introduction and Problem Identification

Photo-Voltaic Energy

- Relieve energy shortage
- Relieve environmental pollution
- Flexible system size
- Simple installation

Marketing Requirement

Main requirements for the off-the-grid photovoltaic inverters in residential applications:

- Safe to use
- Efficient
- Cost Effective
- Reliable

Engineering Requirement

Main engineering requirements for the off-the-grid photovoltaic inverters in residential applications:

- Maximum Power Generation
- Compatibility with PV system
- Sinewave form with 50 Hz frequency
- Affordable price
- Reliability
- Technologically Implementable

Different aspects of the scenarios

Final Cost of the produced off-grid inverter Compatibility with the other elements in the PV power generation system

Load and demand

Produced topologies and technologies in the market

Step 1

Conceptual design

Step 2

- Software validation by simulation
- PSIM

Step 3

Functional testing

Step 4

- Final design
 - Schematics (Prototype Board)
 - PCB (Printed Board with components on it)

Design Process for the 1-phase inverter

Single phase Half bridge inverter

- For our prototype we chose the Half bridge inverter
- Cheaper and better for home application

Single phase Full bridge inverter

Design Process for the 1-phase inverter

The 1-phase inverter with DC-DC boost convertor circuit in simulation

Design Process for the 1-phase inverter

Simulation result for the 1-phase inverter with DC-DC booster

Preliminary Design

Components

12V Battery

50W Solar panel

Preliminary Design Testing vs. Simulation Result

Final PCB Design for 1-Phase Half bridge inverter

Schematics

- Create Schematic
 - Arduino Mega with microcontroller ATmega2560
 - MOSFET Driver SG3525A
 - Transformer

Schematic Library for the Arduino transformer, and MOSFET driver

- Arduino controls the MOSFET driver.
- MOSFET driver provides the gate voltage to the two MOSFETS
- The MOSFETS are used in the 1-phase inverter
- The inverter feeds in to step-up transformer

PCB Prototype

PCB Library for components in schematic

 PCB library obtained from online resources for Adruino Mega

MOSFET Driver

PCB Library for transformer

 Created PCB Library from scratch which is built using exact dimension and specification from the transformer with similar properties.

Implementation – Top Layer

Implementation – Bottom Layer

Final Product

Top Side

Bottom Side

PV inverters can be categorized as:

- Module integrated inverters, typically in the 50–400 W
- String inverters, typically in the 0.4–2 kW
- Multistring inverters, typically in the 1.5–6 kW
- Mini central inverters, typically > 6 kW
- Central inverters, typically in the 100–1000 kW

Cost

Vendor and Description of Expense (ie. Bestbuy-HP Scanner)	Subtotal	HST	Total
uxcell 20 sets EE 16 5 with 5 pin Transformer bobbin PC40 ferrite core vertical 40 ferrite	\$14.50	\$1.08	\$15.58
bridgold 10 pcs IRF 3205PBF IRF 3205 N channel power MOSFET transister	\$12.63	\$0.93	\$13.56
3KV/ 100 pF to 10000pF High Voltage DIP ceramic Capacitor assortment Kit 150 pcs	\$12.63	\$0.93	\$13.56
Wingoneer 10nF to 470nF Metallized polyster Film Capacitors assortment kit	\$11.48	\$0.76	\$12.24
IndustrailMaker 10 pcs.lot SG3525AN DIP16 SG3525A DIP SG3525A DIP SG3525 3525 DIP-16	\$5.73	\$0.36	\$6.09
APC Back-UPS ES 550 8 Outlet 550 VA BE550R 12 V 7 Ah UPS Battery	\$29.39	\$3.82	\$33.21
Solar Panel 50w 18V 12 V bendable flexible, waterproof solar car battery charger	\$99.99	\$7.27	\$107.26
Shipping	\$66.89	\$0.06	\$66.95
			\$0.00
PCB samples	\$264.77	\$25.43	\$290.20
Fedex international Economy (shipping)	\$133.92	\$0.00	\$133.92
Duty custom for the PCB samples	\$40.78	\$0.00	\$40.78
Philmore power supply Transformer with center tap +2 of uxcell torid core inductor wire	\$70.70	\$0.00	\$70.70
Mega 2560 R3 ATMEGA16U-MU USB Board Development Board for arduinos mega2560	\$26.40	\$5.82	\$32.22
Double BTS7960 43 H-bridge High-power Motor Drive module smart car	\$12.00	\$16.06	\$28.06
Total Cost			\$864.33

Code

- The core microcontroller in this Arduino is AVR ATmega 2560
- CodeWizardAVR used to program AVR microcontroller
 - Provides more tools to access to the timers
 - Access to other peripherals
- Code contains following functions:
 - Timer1 overflow interrupt
 - Timer3 overflow interrupt
 - Timer 0 and Timer 4 for PWM
- Each interrupt updates duty cycle and gate signal of switches.

Testing

- Inverter DC performance test:
 - To assess the inverter performance during voltage and power changes in the DC source.
- Inverter AC performance test:
 - Inverter Output Time Delay Test
 - Under-Voltage/ Over-Voltage Transients Tests
 - Voltage/Frequency Oscillation Tests
 - Short Circuit Test

Conclusion & Achievements

- We created a simple yet effective design.
- Our design provides good performance and a stable output.
- It is safe and commercially viable.
- By using wholesalers and PBC fabrication companies we can offer our inverter less than 150 dollars.
- Making our design one of the cheapest on the market.
- We will have some difficulty to certify our product by national and international standard organization
- To improve our inverter we need to add 2 more parallel circuits
 - One problem we need to synchronize all the circuit
 - So we need to create a synchronizer circuit to synchronize all the outputs
 - Current Limiter and voltage limiter

Live demonstration

References

- F. Dincer, "The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy.," Renewable and Sustainable Energy Reviews, pp. 713--720, 2011.
- R. Adib, "Renewables 2015 global status report," REN21 Secretariat, vol. 83, p. 84, 2015.
- R. A. Messenger and A. Abtahi, Photovoltaic systems engineering, CRC press, 2010.
- Poissant, Yves, Lisa Dignard-Bailey and P. Bateman, "Photovoltaic technology status and prospects: Canadian annual report 2015," 2016.
- P. Selya, et al., "2008 solar technologies market report. No. LBNL-3490E. Lawrence Berkeley National Lab.(LBNL)," Berkeley, CA (United States), 2010.
- A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons, 2011.
- B. Burger, "Highly Efficient PV-Inverters with Silicon Carbide Transistors," in Proc. 24nd European Photovoltaic Solar Energy Conference, 2009.
- Y. Yang, Advances in Grid-Connected Photovoltaic Power Conversion Systems, Woodhead Publishing, 2018.

- M. Meinhardt, G. Cramer, B. Burger and Zacharias, "Multi-String-Converter with Reduced Specific Costs," Solar Energy, p. 217–227, July–December 2001.
- O. Lopez, R. Teodorescu, F. Freijedo and Doval, "Leakage Current Evaluation of a Single-Phase Transformerless PV Inverter Connected to the Grid," in Applied Power Electronics Conference, APEC 2007.
- Y, Zaohong and S. Paresh, "A novel switch-mode DC-to-AC inverter with nonlinear robust control," IEEE Transactions on Industrial Electronics, vol. 45, pp. 602--608, 1998.
- Fardoun, A. Abbas, Ismail, H. Esam and A. Sabzali, "New efficient bridgeless Cuk rectifiers for PFC applications," IEEE Transactions on Power Electronics, vol. 27, pp. 3292--3301, 2012.
- J. Newmiller, D. Blodgett and S. & Gonzalez, "Performance Test Protocol for Evaluating Inverters Used in Grid-Connected Photovoltaic Systems," DNV KEMA Renewables, Inc. and Sandia National Laboratories, NM, Rep. SAND2015-1817R., 2015.
- "http://shrinkthatfootprint.com/average-household-electricityconsumption#F7wK2pRtd07OhYDr.99," [Online].
- K. Brennan, A Guide to the Business Analysis Body of Knowledger, liba, 2009.

