
Modernize Security

Sunny Patel Samantha Husack Ethan Wallace Alexander Hurst

Design and Development of a Detection and Tracking System for Moving Objects



Research Area
Design a System that Detects and Tracks Objects, specifically pedestrians, in Various Contexts.



The Problem
Traditional Security Systems are Not Ideal for All Users



The Problem(s) with 
Traditional Systems

Very long term storage unfeasible

Single Point of Access

Not extensible without $$$
(hardware or software)

Often not accessible off-premises



The Problem(s) with 
Traditional Systems

Very long term storage unfeasible

Single Point of Access

Not extensible without $$$
(hardware or software)

Often not accessible off-premises



The Problem(s) with 
Traditional Systems

Very long term storage unfeasible

Single Point of Access

Not extensible without $$$
(hardware or software)

Often not accessible off-premises



The Problem(s) with 
Traditional Systems

Very long term storage unfeasible

Single Point of Access

Not extensible without $$$
(hardware or software)

Often not accessible off-premises



The Solution



Objectives
● Easily Scalable
● Multiple Access Points
● Secure
● Available Off-Premises
● Little Latency



Objectives
● Observe Paths taken by Objects
● Live Video Streams with 

Identified and Tracked Objects
● Secure Access

○ Secure Login
● Administrator Ability to Add and 

Remove Cameras



The Solution



VERIFEYE

A security system that is:

● Distributed tracking-based security system
● Multi-platform
● Portable
● Extensible in hardware

○ Supports the addition of any number of cameras
● Extensible in software



How VERIFEYE Works 
Cameras

Put the Eye in VerifEye
Server and DB

Heavy Lifting
Client Devices
Display Footage

Available on IOS, 
Web and Android

With non-proprietary, 
modifiable protocols

Of any shape, size and 
number



How VERIFEYE Compression Works



Modes of Tracking - Past Footage
VerifEye can handle security in the following configurable ways

Requirement Method Used Storage Implications

High-traffic, low 
area-of-coverage

Traditional - Record the entire 
scene, overlays bounding boxes

Matches today’s storage 
rates

Low traffic, high 
area-of-coverage. 
Non-safety critical

Minimized - Record only the actors 
and their movements. Not whole 
video.

Vastly improves storage 
rate.



The Design
A thorough overview



Requirements
❏ Mobile Application + Web Application

❏ Security

❏ Multiple Cameras

❏ View footage from server
❏ Live

❏ Past

❏ Track Objects in Footage



Design: The System 

Tracking 
Server

Central 
Database

System 
Access 
Points 

Camera

Camera

Camera

API

Records Video Detects and 
Tracks Objects

Save User and 
Video Data

Link Between 
Access Point 
and Database

User Interacts 
with System



Design: System 
Architecture



Design: Server
Goal of server: Track objects of interest 

How it works:

● Custom trained Neural Network for tracking

● SORT - a Kalman Filter based Multiple Object Tracking model

● Additional logic for occlusion and re-entry

● FFmpeg and OpenCV for decoding, processing and encoding

https://docs.google.com/file/d/1f2k-BWDdsSyqYtXrnqXU2W_XTzx6GXrF/preview


Design: Database & NFS
● User Information

○ Login credentials

○ User Preferences

○ User Information

● Camera Information by organization

● Video Data

● Tracked Objects as video streams



Design: API Endpoints
● Asynchronous, distributed event bus

● Scalable architecture

● Video data is chunked and sent asynchronously as a byte stream
○ Vert.x is able to stream video very efficiently by bypassing userland



Design: UI Endpoints
● Mobile application built with Flutter

○ View Cameras, add Favorites, Profile Settings

● Web application built with Angular
○ Feature parity with mobile application + admin portal



The Implementation
Behind the Scenes 



Cameras

Any camera that uses a non-proprietary 
interface

● USB
● MIPI
● SDI

Also supporting IP Cameras for low-cost, 
low-energy solutions



Server: Python

● Runs on windows, linux or EC2 
instance

● An Dell Precision 3520 can handle 2 
720p streams at 30fps

● Deep neural network + Multiple 
object tracker 

● Inference -> Track



Testing the Server

● Checked the mAP of the detections
○ 78-96%

● Visually checked the following*:
○ False positive crossovers

■ 5 (on exit & re-entry)
○ Lost actors

■ 1
○ False positive switches

■ 41

*over 20 minutes of concatenated video



Engineering Tradeoffs

● Latency vs Extensibility
○ Is low latency really important?
○ Solution: Enable both (HLS + 

option for UDP)
● Tracking accuracy vs privacy

○ Reduce number of false 
positive switches by 
re-identifying actors?

○ Not worth it



API and API Testing: 

● REST 

● Java-based (vert.x)

● “Glue” for other services 

making up the application

● Postman API design suite
○ Scriptable interface



System Access Points

● Mobile Application
● Web Application

● Interact with REST API for data, 
video and security



Mobile Application - Built With Flutter

○
○
○
○
○

UI

BLoC

Repository and Data Sources

Events

Async Request

Async Response

States



Design: Web Application
● Angular

○ Extensible, Secure

○ Open Source, built on TypeScript

● Material Design



Existing Solutions



Image Recognition
● Microsoft Computer Vision API
● Amazon Rekognition
● Google Cloud Vision API
● Open CV
● Clarifi
● Torch

We use
YOLO

Deep Neural Convolutional Net



Object Tracking
● Tracker by Vicon
● Qualisys
● Kinovea
● Noraxon

We use
SORT

Kalman Filter Based Tracking



Implications of Development
VerifEye started off as an application. It is now a powerful Open Source Platform.

● Each component of VerifEye is valuable in its own right
○ Multiple Object Tracking with occlusion considerations is a currently open problem

■ Applicable to self driving cars

○ Open source distributed code for serving video

■ Applicable to many other use cases

■ Internal, secure video streaming for large organizations

○ Extensible, flexible dual-platform code that handles live and stored video

■ Useful for content-sharing



Demo and Testing Setup

Testing Setup:

4 Computers (Server, API, Observer, User)



Demonstration



https://docs.google.com/file/d/1jbKCEAtVlD0--7-grr2kyge29d_qhLP7/preview


Q&A


