

Faculty of Engineering and Applied Science

ENGR 4940U Capstone Systems Design for ECSE II

Design of Repurposed Electric Vehicle Battery for Residential Application

Team Members:

Armon Aryaie 100591975 Sameer Awan 100588654 Alan Deng 100588536 Ryan Hurtis 100522176 Murtaza Zaidi 100539844 Faculty Advisor: Dr.Vijay Sood

Course Coordinator: Dr.Qusay Mahmoud

Outline

- Introduction
- Problem Identification
- Our Solution VS Others
- Final Design
- Testings
- Results and Simulations
- Acknowledgement

The Growth of Electric Vehicles

- Rapid Growth in the EV industry
- **2013**-3,000 vs **2018**-93,000
- Average Life of EV battery is around 7 years
- Batteries will still have 80% useful life
- Battery Materials:
 - Metal
 - Wiring
 - Chemicals
 - Protective Materials

Fig 1: Sales growth of EV in Canada by Province

Problem Identification

Fig 2: Batteries in Landfills

What will happen to these EV batteries once they are decommissioned?

Our Solution

Fig 3: Our Peak Shaving System Reusing Used Fiat 500e Batteries

- Energy Storage System
- Repurpose EV Batteries
- Reduce, Reuse and Recycle
- Residential
- Peak shaving

Fig 4: Reduce, Reuse, Recycle Symbol

Comparison of Energy Storage Systems

Company	Spiers New Technology	Johan Cruijff Arena	Tesla	eCamion Community Energy Storage (CES)		
Product	Watt Tower-Energy Storage System	Amsterdam Energy Arena	Tesla Power Wall			
Description/ Comparison	 Just an energy storage system Reuses lithium lon Batteries Distributes to multiple loads Focused purely on Tesla cells (18650) 	 For arenas Solar panel charging Sells back to local utility companies Using Nissan Leaf cells 	 For homes Solar panel charging Sells back to local utility companies Using only new cells	 For Communities Sells back to local utility companies Power factor correction Focused on using new cells 		

Final Design

Fig 5: Schematic of Final Design

Main Components

Fig 6: FIAT 500e Battery Module

Fig 7: 1000 W, 90-140 V_{AC} Grid Tie Inverter

Fig 8: DC Power Supply

Fig 9: Arduino Mega

Fig 10: Solenoid Relay

Fig 12: Slow Blow Fuse

Fig 11: Arduino Relay

Fig 13: Current Sensor

Fig 14: Battery Management System

Fig 15: Voltage Sensor Circuit

Testings

Fig 16: Assembling The System

Individual Testings

Fig 17: Voltage Sensor

Fig 18: Setup for Voltage Sensor Test

Fig 19: Voltage Sensor Circuit

Fig 20: Arduino Real Time Clock

Fig 21: Testing Setup of Arduino Real Time Clock

Testing Issues

Fig 22: Scanning Grid Tie Inverter and Chargers Using Thermal Camera

Fig 23: Thermal Image of the Inverter

Fig 24: Broken Charger

Fig 25: Blown Fuse Socket

Fig 26: Blown Fuse

Results and Simulations

Fig 28: Processing GUI while the system is in the off state.

Results and Simulations

MasterR3		×—× [×	MasterR3		=	×	.
	SERIES STRING A	SERIES STRING B			SERIES STRING A	SERIES STRING B		
Cell 1 Voltage (V)	3.590	3.520		Cell 1 Voltage (V	3.590	3.520		
Cell 2 Voltage (V)	3.830	3.720		Cell 2 Voltage (V	3.460	3.220		
Cell 3 Voltage (V)	3.810	3.780		Cell 3 Voltage (V	3.370	3.150		
Cell 4 Voltage (V)	3.770	3.840		Cell 4 Voltage (V	3.390	3.400		
Cell 5 Voltage (V)	3.780	3.780		Cell 5 Voltage (V	3.470	3.270		
Cell 6 Voltage (V)	3.810	3.780		Cell 6 Voltage (V	3.310	3.340		
Cell 7 Voltage (V)	3.770	3.780		Cell 7 Voltage (V		3.280		
Cell 8 Voltage (V)	3.710	3.850		Cell 8 Voltage (V		3.280		
Cell 9 Voltage (V)	3.850	3.780		373 2 3				
Cell 10 Voltage (V)	3.710	3.910		Cell 9 Voltage (V		3.270		
String Voltage (V)	37.830	37.710		Cell 10 Voltage (V)-0.070	3.340		
String Current (A)	28.360	20.660		String Voltage (V	31.610	33.040		
String Power (W)	1072.859	779.089		String Current (A)-5.560	-5.260		
				String Power (W)-175.752	-173.790		
				1				

Fig 29: GUI while the inverter circuit is on

Fig 30: GUI while the charging circuit is on

Acknowledgements

Our capstone group would like to thank the following people for their contribution to this project:

- Dr. Vijay Sood for his guidance and mentorship
- Carmine Pizzurro eCamion for supplying us with batteries and data
- Jigneshkumar Patel, Ahmed Sheir and Mohammed Umar for giving guidance
- Canadian Industrial Solutions Limited for providing the tools and equipment
- Dan from Home Depot Oshawa for his guidance
- Dr. Qusay Mahmoud for providing guidelines

Thank You For Listening

