Design of Distributed Generation System for Islanding & Anti-Islanding Rural Application

> Brydon Milne, Harrison Marshall, Jeremy Shin, Yuri Krushelnycky, Mark Kolisnyk

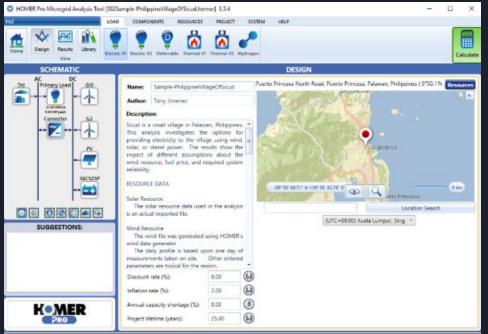
Presentation Overview

- Restate Project Objective
- Existing Solution Example
- How Our System Works
- Technical Design
 - Project Requirements
 - Standards Utilized in Design
 - Implementation of Concepts (IOC)
- Testing & Design Tradeoffs
- Demo
- Conclusion

Objective

- Microgrid Optimization
 - Distributed Generation (DG) Placement, Resources (Solar & Wind)
 - Location based

• Constraints


- Financial Must see a return on investment
- Stability
 - Varying climate conditions
 - Must satisfy load of the microgrid at any point in time
 - Smooth disconnection & reconnection to the main power grid

Existing Solution: Homer Pro

Applications of HOMER PRO

- Island Microgrids
- Energy Access/ Rural Electrification
- Unreliable Grids
- Grid Extension

How HOMER works

- Simulation
- Optimization
- Sensitivity Analysis

How Our System Works

Three main components to our system design

- Graphical User Interface (GUI)
- MATLAB/ Optimization Code
- Simulink Model

Key Features

- Selection of which Canadian province or territory the microgrid will be located in
- Optimization of distributed penetration
- Embedded Simulink plots in the GUI
- Access to Simulink design & backend

Benefits

- Tailored made for the country of Canada
- Simulink plots are embedded in the GUI

Technical Design Overview

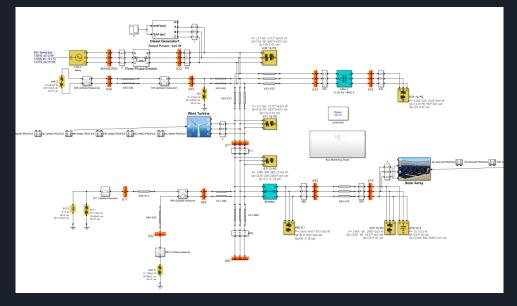
- Project Requirements
- Design Standards
- Implementation of Concepts (IOC)

Project Requirements

As defined in Report 1:

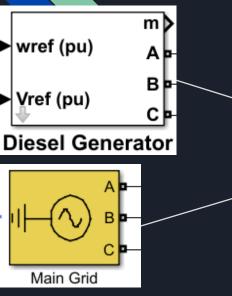
- 1. Measure difference (error) in parameters between the IEEE Std. 1729-2014 and our Simulink model.
- 2. Satisfy the Power Balance Equation ($P_{Generated} = P_{Delivered} + P_{Loss}$).
- 3. Operate Connected to Grid
- 4. Operate in Islanding mode
- 5. Maintain Operation during disconnection from main grid
- 6. Maintain Operation during connection back to main grid

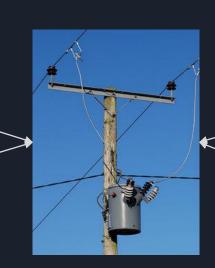
Standards Utilized in Design

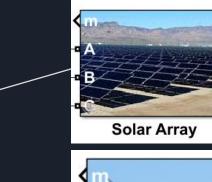

- IEEE Std. 1729-2014 Recommended Practice for Electric Power Distribution
 - Definition of design challenges and conceptual systems
 - Testing of those systems
- ANSI C84.1 Electric Power Systems and Equipment Voltage Ranges in
 - Performance levels of the grid
 - Safe operating limits
- CSA C22.1-18 Canadian Electrical Code Part I Safety Standard for Electrical Installations im
 - Fundamentals and safe practice of design and construction
 - Section 8 / page 104 Circuit loading and demand factors
 - Page 116 Calculated load for services and feeders
- I
 IEEE Recommended Practice for Electric Power Distribution System Analysis," in IEEE Std 1729-2014, vol., no., pp.1-20, 5 Dec. 2014

 doi: 10.1109/IEEESTD.2014.6974967
 Power Quality World, "ANSI C84.1 Electric Power Systems and Equipment Voltage Ranges," Power Quality World, Apr. 2, 2011. [Online].

 V
 Available:
 http://www.powerqualityworld.com/2011/04/ansi-c84-1-voltage-ratings-60-hertz.html?
 - Canadian Standards Association, "C22.1-18 Canadian Electrical Code Part I Safety Standard for Electrical Installations" Canadian Standards Association. 24th Edition, Published by CSA Group 2018, 943 pages. SKU: 2425666.

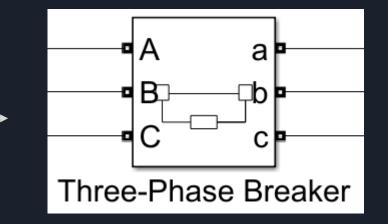



IOC - Simulink Model



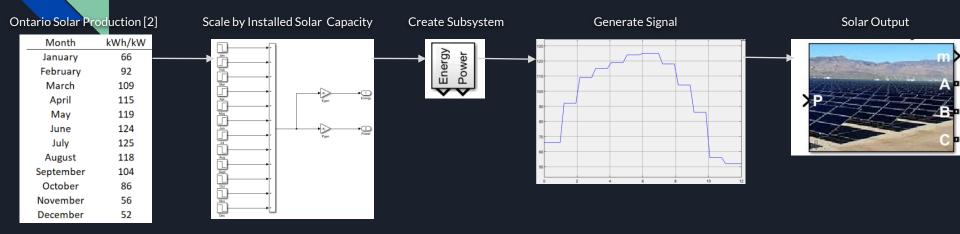
• Modified model of the IEEE 13 Node Test Feeder [2]

IOC - Simulink Model - Distributed Energy Resources (DERs)

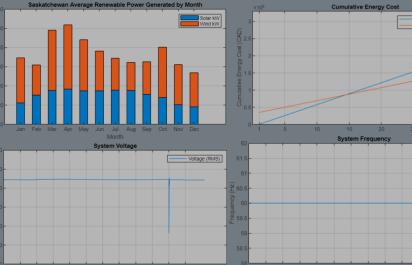


Wind Turbine

- Grid-Connected mode of operation
- Islanded mode of operation

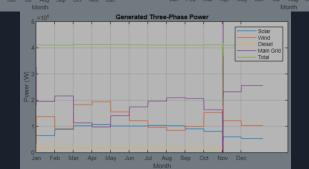

IQC - Simulink Model - Main Grid Disconnection and Reconnection

• Three-Phase Breaker is programmed to open/close at user-defined times of the year


IOC - Simulink Model - Realistic Climate Data

- Utilize factual climate data from each region of Canada
- Simulate power generated by renewables based upon optimized capacities of solar & wind

IOC - Graphical User Interface (GUI)



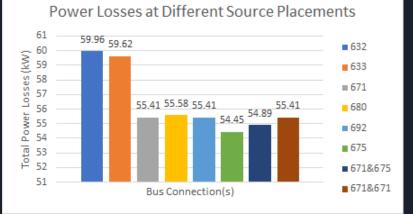
Grid Connection Only

Grid Connection & DERs

- Location selection
- Optimized capacities
- Simulation settings
- Variety of plots
- Seamless control of the Simulink model

Testing

- Test several different 'blocks' available for wind, solar and diesel generation
 - Decision made based on integrability and simplicity


• Grid disconnection and reconnection

- Three-Phase breaker
- Diesel generator power control

- Optimization
 - Ratio based amount of wind to solar energy over the course of the year
 - Areas experiencing very little wind yielded erroneous results

Power Loss Testing - Optimal Source Placement

- Connect a diesel generator to each bus of the model, one at a time
- Measure power losses and determine optimal source placement
- Connect DERs to low-loss buses

Design Tradeoffs

- Simulink solver issues
 - Some solvers require extensive time to simulate the system
 - Sacrifice accuracy for decreased simulation time
- Many available 'block' configurations for sources
 - Some are not compatible with each other, require different 'powergui' settings
 - Sacrifice customizability for integrability and simplicity
- Integration of the GUI & Simulink model
 - Significant amount of research required to develop a proper relationship
 - Sacrifice some features for decreased simulation time

Demo

• Walkthrough of the user experience

Conclusion

We are proud of our project, and a special thanks is owed to the following Ontario Tech University affiliates:

- Dr. Walid Morsi Ibrahim
- Daniel Mabuggwe
- Dr. Qusay H. Mahmoud

References

[1]	HOMER Energy, "HOMER Pro," HOMER Energy, n.d. [Online]. Available: https://www.homerenergy.com/products/pro/index.html
[Accessed Mar. 28, 2020].	
[2]	G. Sybille (Hydro-Quebec), "IEEE 13 Node Test Feeder," <i>MathWorks Documentation</i> , n.d. [Online]. Available: https://www.mathworks.com/help/physmod/sps/examples/ieee-13-node-test-
feeder.html.	[Accessed Oct. 15, 2019].
[3]	Energy Hub, "Solar Energy Maps Canada (Every Province)," <i>Energy Hub</i> , Jun. 14, 2019. [Online]. Available: https://energyhub.org/solar-energy-maps-canada/ [Accessed Nov. 12, 2019].