Eleos Smart Mirror # Capstone Project | Name | Student ID | | | |------------------|------------|--|--| | Joseph Veneziano | 100572553 | | | | John Polvorosa | 100553007 | | | | Matthew Cardy | 100489683 | | | | Craig Savage | 100615968 | | | ### **Problem Statement** Mirrors are part of our everyday lives - Untapped in technological innovation - Sufficient but not meaningful ## **Existing Solutions** - Majority of products are DIY - Pre-made are expensive - Lackluster functionality - Poor customization ## **Achieved Objectives** - Converted traditional furniture to increase productivity. - Mirror provides innovative solutions with user friendly application. - Added modifiable widgets: - > Clock - Face Statistics - Weather forecast - Calendar with Events - Voice Commands ### Engineering Design #### **Utilized University Courses** - Capstone I, Capstone II, Software Project Mgmt, Ethics - Android Studio, Computer Security, Data Management - Embedded Systems, Systems Programming, Software Quality - Microprocessors, Architecture, IoT, UI, - OOP, Data Structures, Algorithms, Al, ML, Data Mgmt - Cloud Computing | Software Engineering Program Map 2015-2016 | | | | | | | | |--|---|--|---|---|--|---|--| | Year | Course | Course | Course | Course | Course | Course | | | 1-1 | COMM 1050U Technical Communications | ENGR 1015U
Introduction to Engineering | MATH 1010U
Calculus I | MATH 1850U
Linear Algebra for
Engineers
(Coreq: MATH 1010U) | PHY 1010U
Physics I | | | | 1-2 | CHEM 1800U
Chemistry for Engineers | SSCI 1470U
Impact of Science and
Technology on Society | ENGR 1200U
Introduction to Programming for
Engineers | MATH 1020U
Calculus II
(Prereq: MATH 1010U) | PHY 1020U
Physics II
(PHY 1010U) | ENGR 1025U
Engineering
Design
(ENGR 1015) | | | 2-1 | ELEE 2110U
Discrete Mathematics for
Engineers
(MATH 1020U, MATH
1850U) | ELEE 2790U
Electric Circuits
(MATH 1020U,
PHY1020U, MATH 1850U) | SOFE 2710U Object Oriented Programming and Design (ENGR 1200U) | SOFE 2800U
Web Programming
(ENGR 1200U) | Liberal Studies Elective | | | | 2-2 | SOFE 2715U
Data Structures
(SOFE 2710U) | ELEE 2450U
Digital Systems
(ELEE 2110U) | Science Elective | SOFE 2720U
Principles of Software and
Requirements Engineering
(SOFE 2710U, SOFE
2800U) | STAT 2800U
Statistics and Probability
for Engineers
(MATH 1020U) | | | | 3-1 | ELEE 3450U
Microprocessors and
Computer Architecture
(ELEE 2450U) | SOFE 3650U
Software Design and
Architectures
(SOFE 2720U) | SOFE 3770U
Design and Analysis of
Algorithms
(ELEE 2110U, SOFE 2715U,
MATH 1850U) | SOFE 3200U
Systems Programming
(SOFE 2720U) | SOFE 3700U
Data Management
Systems
(SOFE 2715U, SOFE
2720U) | Liberal Studies
Elective | | | 3-2 | ENGR 3360U
Engineering Economics | SOFE 3490U
Software Project
Management
(54 credit hours) | SOFE 3720U
Introduction to Artificial
Intelligence
(SOFE 3650U, SOFE 3770U) | SOFE 3950U
Operating Systems
(SOFE 3200U, ELEE
3450U) | SOFE 3980U
Software Quality
(SOFE 3200U, SOFE
3650U, SOFE 3770U,
SOFE 3770U) | SOFE 3850U
Computer
Networks
(54 credit hours) | | | 4-1 | ENGR 4940U Capstone Systems Design for Electrical, Computer and Software Engineering I Guccessful completion of all non-elective courses in year three) | SOFE 4790U
Distributed Systems
(SOFE 3770U, SOFE
3850U, SOFE 3950U) | SOFE 4850U
User Interfaces
(SOFE 3650U) | SOFE 4590U
Embedded Systems
(ELEE 3450U, SOFE
3950U) | Engineering Elective | | | | 4-2 | ENGR 4941U
Capstone Systems Design
for Electrical, Computer and
Software Engineering II
(ENGR 4940U) | ENGR 4760U
Ethics, Law and
Professionalism for
Engineers | SOFE 4840U
Software and Computer
Security
(SOFE 3850U, SOFE 4790U) | Engineering Elective | Engineering Elective | | | # Engineering Design #### **Focal Points** - 1. Reliability - 2. Functionality - 3. Simplicity - 4. Security - 5. Scalability ## Engineering Design ### **Tools** - Magic Mirror² - Google Assistant - Dialogflow - > Firebase - OpenCV - MQTT - Docker #### **Architecture** - Local Architecture - Individual Software Modules - Machine Learning - > Facial Recognition - Emotional Analysis - Voice Recognition - Mobile Application - Publish/Subscribe Communication Model - Bluetooth - WiFi Connectivity ## **Design Breakdown** #### Hardware & Components - Acrylic Two Way Mirror - > Monitor - > Microphone - > Camera - > Speaker - > Raspberry Pi # The Build #### Communication Flow #### Communication Flow - Mobile app used to customize - Customization enables dynamic information display - Selected widgets can be placed in any of the sections shown. - Increased ease of use #### Communication Flow - Voice recognition conversation flow - Changes were made from original design ### **Analysis Process** ### Design Revisions # Implemented changes under consultation from Dr. Anwar: - Modified Features - Added more functionalities - Removed foreseen hazards - Improved Machine Learning - Moved recording of facial recognition from app and moved it to the mirror - Removed moods page in mobile application since we chose not to have LED strips as they are foreseen hazards - Added Profile page to setup up user profile - Added Setup page - Bluetooth, Registration, Wifi - Improved UI #### **Product Testing Approach** #### How we approached the testing Incremental review throughout the design process Utilized this methodology since we have H/W & S/W → Utilized Automated Testing Python using unittest Framework #### Simulation Results #### **Revised Emotional Detection** ### Takeaway Note The best products that come out in the market are the things that most people don't know that they need. ### Demonstration