Complex functions

A complex function can be written in terms of its real and imaginary parts:

$$w = f(z) = f(x + iy) = u(x, y) + iv(x, y)$$
 or $w = f(z) = f(re^{i\theta}) = u(r, \theta) + iv(r, \theta)$

Exponential function

Power series: $e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n$

Some similarities with its real counterpart include: $e^0 = 1$, $e^z \neq 0$, $\frac{d}{dz}e^z = e^z$, $e^{z_1}e^{z_2} = e^{z_1+z_2}$

Some notable differences: e^z is not one-to-one, e^z can attain negative values

A key property used for computation is $e^z = e^x(\cos y + i \sin y)$, hence e^z is periodic:

$$e^z \equiv 1$$
 if $z = 2k\pi i, k \in Z$

$$e^{z_1} \equiv e^{z_2}$$
 if $z_1 = z_2 + 2k\pi i$, $k \in Z$

Example:
$$e^{2+i\frac{\pi}{4}} = e^2(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)) = e^2\left(\frac{\sqrt{2}}{2} + \frac{i\sqrt{2}}{2}\right)$$

Example: Find all $z \in C$ such that $e^z = \sqrt{3} - i$

First, write in polar form: $\left|\sqrt{3}-i\right|=\sqrt{3+1}=2$ and $Arg\left(\sqrt{3}-i\right)=-\frac{\pi}{6}$

Then, $e^z = e^{x+iy} = e^x e^{iy} = 2e^{-i\frac{\pi}{6}}$ only when:

$$e^x = 2$$
 and $e^{iy} = e^{-\frac{i\pi}{6}}$ or $e^{iy - \left(-\frac{\pi}{6}\right)} = 1$

Which is true when $x = \ln(2)$ and $y + \frac{\pi}{6} = 2\pi k$ or $y = \frac{\pi}{6}(12k - 1), k \in \mathbb{Z}$

Notation: $f(z) = e^{\frac{1}{3}}$ may be interpreted as any of the complex third roots so sometimes $\exp(z)$ is used to denote that a single value is chosen, i.e. $\exp\left(\frac{1}{3}\right) \approx 1.3956$ whereas $e^{1/3} \approx$

$$1.3956\left(\cos\left(\frac{2\pi k}{3}\right) + i\sin\left(\frac{2\pi k}{3}\right)\right) \text{ for } k = 0, 1, 2.$$

Logarithmic function

Multivalued logarithm:

 $\log(z) = \{\ln|z| + i(Arg(z) + 2n\pi)\} = \{\ln(z) + iarg(z)\},$ where n is an integer and for $z \neq 0$

Student Learning Centre

Call: 905.721.8668 ext. 6578

Email: studentlearning@ontariotechu.ca Downtown Oshawa Location: 61 Charles St. Website: ontariotechu.ca/studentlearning North Oshawa Location: Student Life Building

Single-valued logarithm (principal value):

Log(z) = ln|z| + iArg(z), for $z \neq 0$,

Example:
$$\operatorname{Log}(\sqrt{3} - i) = \ln(2) + i\left(-\frac{\pi}{6}\right)$$

Properties:

 $exp(Log(z)) = z \text{ for } z \neq 0 \& Log(exp(z)) = z \text{ for } -\pi < Im(z) \leq \pi \text{ (Recall: Arg(z) } \in (-\pi,\pi])$

It also gives a way to define complex powers, for $\alpha \in \mathcal{C}$:

$$z^{\alpha} = e^{\alpha \log(z)} = e^{\alpha(\ln|z| + i \arg(z))}$$

Note: if α is rational, only a finite number of z^{α} result

Example: Determine all possible values of $(i)^{\sqrt{3}/4}$.

First, if z = i, then $|z| = \sqrt{0^2 + 1^2} = 1$ and $Arg(z) = \frac{\pi}{2}$

$$z^{\alpha}=\,\{\,e^{\frac{\sqrt{3}}{4}\left(\ln(1)+i\left(\frac{\pi}{2}+2\pi n\right)\right)}|\ n\in Z\}$$

$$= \{ e^{\frac{\sqrt{3}}{4} \left(i \left(\frac{\pi}{2} + 2\pi n \right) \right)} | n \in Z \} = \{ e^{i \frac{3\pi}{8} (1 + 4n)} | n \in Z \}$$

$$= \left\{ \cos \left(\frac{\sqrt{3}\pi}{8} (1+4n) \right) + i \sin \left(\frac{\sqrt{3}\pi}{8} (1+4n) \right) \middle| n \in Z \right\}$$

Example: Determine all possible values of $(i + \sqrt{3})^i$.

Ans:
$$\left\{ e^{-\frac{\pi}{6} + 2\pi n} [\cos(\ln 2) + i \sin(\ln 2)] \mid n \in Z \right\}$$

Note: The Maple command **evalc** yields the principal value.

Trigonometric functions

The familiar identities and derivatives for trigonometric functions still hold in \mathcal{C} .

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}), \cos z = \frac{1}{2i} (e^{iz} + e^{-iz})$$

 $\sin(x + iy) = \sin x \cosh y + i \cos x \sinh y$, $\cos(x + iy) = \cos x \cosh y - i \sin x \sinh y$

$$\sinh z = \frac{1}{2}(e^z - e^{-z})$$
, $\cosh z = \frac{1}{2}(e^z + e^{-z})$

A notable difference: $\sin z$ and $\cos z$ are unbounded, unlike $|\sin x| \le 1, x \in R$.

$$|\sin z|^2 = \sin^2 x + \sinh^2 y$$
, $|\cos z|^2 = \cos^2 x + \sinh^2 y$

Student Learning Centre

Call: 905.721.8668 ext. 6578

Email: studentlearning@ontariotechu.ca Downtown Oshawa Location: 61 Charles St. Website: ontariotechu.ca/studentlearning North Oshawa Location: Student Life Building

