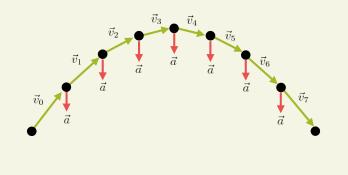
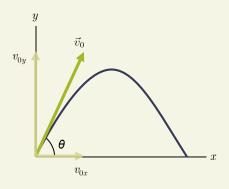
Projectile Motion


A *projectile* is an object that moves in two dimensions under the influence of only gravity. The acceleration is that of *free fall*:

 $\vec{a} = (g, \text{vertically downward})$

The trajectory of a projectile is a *parabola*, which you can see in the below time-lapse photograph of a bouncing ball.



A motion diagram shows that this trajectory is due to the vertically downward acceleration:

Coordinate System

Although where you put the origin is arbitrary, it is standard to arrange your coordinate system for projectile motion such that the y axis is vertical with positive upward and the x axis is horizontal with positive to the right. We'll assume that the projectile is launched to the right at an angle of $\boldsymbol{\theta}$ with initial speed v_0 as shown below.

In this coordinate system, the initial velocity $\vec{\boldsymbol{v}}_{0}$ has components

 $v_{0x} = v_0 \cos \theta$ $v_{0y} = v_0 \sin \theta$

The components of the acceleration $\overrightarrow{\pmb{a}}$ are

 $a_{0x} = 0$ $a_{0y} = -g$

Model: Projectile Motion

With the coordinate system described above, the mathematical model for an object undergoing projectile motion is:

Horizontal Motion	Vertical Motion
Constant velocity	Constant acceleration – free fall
Position $x_f = x_i + v_{ix}\Delta t$	Position $y_f = y_i + v_{iy}\Delta t - \frac{1}{2}g\Delta t^2$
Velocity $v_{fx} = v_{ix} = \text{constant}$	Velocity $v_{fy} = v_{iy} - g\Delta t$

Mechanics