Current

Current is the motion of charges sustained by an electric field.

- Electron current i_e is the rate of flow of electrons.
- Conventional current I is the rate of flow of charge,

 $I = \frac{dQ}{dt}.$

- The current density J = I/A, where A is the cross-sectional area of the wire.

Ohm's Law

An electric field ${\cal E}$ in a conductor creates a current density

$$J = \sigma E,$$

where σ is the *conductivity* of the material. The *resistivity* of the material is $\rho = 1/\sigma$. The resistance of a conductor of length L is given by

$$R = \frac{\rho L}{A}.$$

The unit of resistance is ohms (1 $\Omega = 1$ V/A). Ohm's law says that the current through a conductor is given by

 $I = \frac{\Delta V}{R},$

where ΔV is the voltage across the ends of the conductor.

Kirchhoff's Laws

Kirchhoff's Junction Law

Since charge is conserved, the current into a junction is equal to the current leaving the junction:

$$\sum I_{\rm in} = \sum I_{\rm out}$$

Kirchhoff's Loop Law

Since energy is conserved, the sum of all voltages in a complete loop in a circuit is zero:

$$\Delta V_{\rm loop} = \sum_i \Delta V_i = 0.$$

The voltage here is $\Delta V = V_{\rm downstream} - V_{\rm upstream}$, so that

- For an ideal battery in the negative to positive direction, $\Delta V = +\mathcal{E}$.
- For an ideal battery in the positive to negative direction, $\Delta V = -\mathcal{E}$.
- For a resistor, the potential decreases across the resistor in the direction of the current, so $\Delta V = -IR$.

Batteries

A battery is a source of potential difference (voltage) ΔV_{bat} . This voltage causes an electric field in a connected wire, which establishes a current I. The magnitude of the current is determined by Ohm's law.

- An ideal battery has a voltage $\Delta V_{\text{bat}} = \mathcal{E}$.
- A real battery has internal resistance r and a voltage $\Delta V_{\rm bat} = \mathcal{E} Ir.$
- The power delivered by a battery is $P_{\text{bat}} = I\mathcal{E}$.

Resistor Circuits

Resistors in Series

When connected in series, resistors have the same current through them but different voltage ΔV_R . Resistances add to an equivalent resistance:

 $R_{\rm eq} = R_1 + R_2 + R_3 + \cdots$

but different current. Resistances add in inverse to an equivalent re-

When connected in parallel, resis-

tors have the same voltage ΔV_R

Resistors in Parallel

sistance:

$$R_{\rm eq} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots\right)^{-1}$$

Power

The power dissipated by a resistor is

$$P_R = I\Delta V_R = I^2 R = \frac{\Delta V_R^2}{R}.$$

Measuring Current and Voltage

- An *ammeter* measures current I in a circuit element. It must be placed in series with the element. An ideal ammeter has zero resistance.
- A voltmeter measures the voltage ΔV across a circuit element. It must be placed in parallel with the element. An ideal voltmeter has infinite resistance.

RC Circuits

A capacitor can be discharged by connecting it to a resistor, and charged by connecting it to a resistor and battery.

• Discharging a capacitor:

$$Q = Q_0 e^{-t/\tau} \qquad I = I_0 e^{-t/\tau}.$$

• Charging a capacitor:

$$Q = Q_0 \left(1 - e^{-t/\tau} \right)$$
 $I = I_0 e^{-t/\tau}.$

The time constant $\tau=RC$ determines how quickly the capacitor is charged and discharged.

Electricity and Magnetism