What is charge?

forces

Charge is a property of electrons, which have negative charge, and protons, which have positive charge.

> • All charged objects have either an excess of electrons or an excess of protons. Neutral objects have equal numbers of each.

Charges exert long-range

attractive for opposite charges, repulsive for like charges.

between them:

- Charge is quantized it always comes in amounts of e, called the elementary charge: $e = 1.60 \times 10^{-19}$ C.
- Charge is always conserved.

Proton

Mass: 1.67×10^{-27} kg

Electron Mass: 9.11×10^{-31} kg Charge: $+e = +1.60 \times 10^{-19}$ C Charge: $-e = -1.60 \times 10^{-19}$ C

MODEL: Point Charges

Many objects that have excess positive or negative charge can be modelled as point particles - their size and shape can be neglected, and we can think of all excess charge as being concentrated at a specific point.

Good examples of point charges are electrons and protons, atomic or molecular ions, and even much larger objects such as photocopier toner beads.

Coulomb's Law

Two point charges q_1 and q_2 , a distance r apart, exert forces on each other of magnitude

$$F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = \frac{1}{4\pi\epsilon_0} \frac{|q_1||q_2|}{r^2}.$$

The forces are directed along a line joining the two point charges, either repulsive for like charges or attractive for opposite charges.

Constants Permittivity constant: $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$. Electrostatic constant: $K = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \text{ Nm}^2/\text{C}^2.$

Conductors and Insulators

Insulators: All electrons are tightly bound to their atoms. Charges are fixed in place.

Conductors: Valence electrons form a "sea of electrons." Charges can move easily. Any excess charge in an isolated conductor is located on the surface.

Both insulators and conductors can be charged.

Polarization

Charge separation can easily occur in conductors, leading to polarization: a slight separation of the positive and negative charges in a neutral object.

Polarization can also occur in insulators since each atom can become polarized, with a net overall polarization throughout the object.

Polarization can lead to an attractive polarization force between a charged object and a neutral object.

Applying Coulomb's Law

When multiple point charges are present, use the principle of superposi*tion* to find the net force on point charge 1:

$$\vec{F}_{1,\text{net}} = \vec{F}_{2 \text{ on } 1} + \vec{F}_{3 \text{ on } 1} + \vec{F}_{4 \text{ on } 1} + \cdots$$

For example, if there are three point charges arranged as shown below, you would add the forces due to charges q_2 and q_3 as vectors to find the net force on q_1 .

Electricity and Magnetism