Gauss's Law

Conductors	Insulators
 Charge is distributed uniformly on the surface or surfaces (η is used). Polarization occurs. 	• Charge is distributed uniformly throughout the area if the object is 2D (η is used) or the volume if the object is 3D (ρ is used).
Conductor example A conducting solid sphere and a spherical shell are concentric as shown in the figure below. The inner sphere carries a charge of +5.00 µC. The outer conducting shell carries a net charge of -8.00 µC. The radii shown in the figure have the values $R_1 = 10.0 \text{ cm}, R_2 = 20.0 \text{ cm}, \text{ and}$ $R_3 = 30.0 \text{ cm}.$ i) Find the total excess charge on the inner and outer surfaces of the conducting sphere. ii) Find the magnitude and direction of the electric at the following distances <i>r</i> from the centre of the inner sphere. iii) <i>r</i> = 9.5 cm iv) <i>r</i> = 15.0 cm v) <i>r</i> = 27.0 cm vi) <i>r</i> = 35.0 cm	Insulator example A spherical, non-conducting shell of inner radius $r_{in} = 10.0 \text{ cm}$ and outer radius $r_{out} = 15.0 \text{ cm}$ carries a total charge $Q = 15.0 \mu\text{C}$ distributed uniformly throughout the volume of the shell. What is the magnitude of the electric field from the center of the shell at a distance: i) $r = 8.0 \text{ cm}$ ii) $r = 12.0 \text{ cm}$ iii) $r = 20.0 \text{ cm}$

Check the next page for solutions.

Solution	Solution
Solution i) $q_{shell} = q_{inner} + q_{outer} - 8\mu C = -5\mu C + q_{outer} q_{outer} = -3\mu C$ ii) $E = \frac{Q_{enc}}{A \epsilon_0}$ iii) $r = 0.095$ m $r < 0.1 m = Q_{enc} = 0 \rightarrow E = 0$ iv) $r = 0.15$ m $E = \frac{Q_{enc}}{A \epsilon_0}$ $A = 4\pi r^2$ (surface area of the imaginary sphere) $\epsilon_0 = (8.85)10^{-12}$ $E = \frac{(5) 10^{-6}}{4\pi (0.15)^2 (8.85) 10^{-12}}$ $E = (2) 10^6 N/C (radially outwards)$ v) $r = 0.27$ m $Q_{enc} = 5\mu C - 5\mu C = 0 \rightarrow E = 0 N/C$	Solution i) $r = 8.0 \text{ cm}$ $r < 0.1 m = Q_{enc} = 0 \rightarrow E = 0$ ii) $r = 12.0 \text{ cm}$ $\rho = \frac{Q}{V} = \frac{(15) 10^{-6}}{\frac{4}{3}\pi (0.15^3 - 0.1^3)} = 0.001508 C/m^3$ $Q_{enclosed} = \rho V_{gauss} = \rho \left[\frac{4}{3}\pi (r^3 - r_{in}^3)\right]$ $Q_{enclosed} = 0.001508 \left[\frac{4}{3}\pi (0.12^3 - 0.1^3)\right]$ $= (4.5986) 10^{-6} C$ $E = \frac{Q_{gauss}}{A_{gauss} \epsilon_0} = \frac{(4.5986) 10^{-6}}{4\pi (0.12)^2 (8.85) 10^{-12}}$ $= (2.87) 10^6 N/C$ iii) $r = 20.0 \text{ cm}$ $r > 0.15 m = Q_{enc} = 15\mu C$
vi) $r = 0.35 \text{ m}$ $E = \frac{Q_{enc}}{A \epsilon_0} = \frac{(-3) \ 10^{-6}}{4\pi \ (0.35)^2 \ (8.85) \ 10^{-12}} \rightarrow$ $E = (-2.2) \ 10^5 \ N/C \ (radially inwards)$	$E = \frac{Q_{gauss}}{A_{gauss} \epsilon_0} = \frac{(15)10^{-6}}{4\pi (0.2)^2 (8.85) 10^{-12}} = E = (3.372)10^6 N/C$

Student Learning Centre

Call: 905.721.8668 ext. 6578

Email: studentlearning@ontariotechu.caDowntown Oshawa campus location: Charles HallWebsite: ontariotechu.ca/studentlearningNorth Oshawa campus location: Shawenjigewining Hall

