

Maple Tip Sheet

Start Up

When getting familiar with Maple, it is best to start off with Worksheet Mode:

Common Toolbar Commands

General Information

- Maple is much like Microsoft Word in terms of equation input. Use the following characters to denote each operation: multiplication (*), division and fractions (/), exponents (^), and subscripts (_).
- Maple is also case sensitive; make sure to watch out for capitalization (ex. the variables *mapleVariable* and *Maplevariable* will be different and the commands *limit()* and *Limit()* will show different things.)
- Most Maple input requires you to end in a semicolon (;). So it is best to get into the habit.
- Comments can be added to code via the pound sign (#).
- Maple Worksheets can be saved and run later.

For more information or to book an appointment

Call: 905.721.8668 ext. 6578Email: studentlearning@ontariotechu.caWebsite: ontariotechu.ca/studentlearning

Basic Math

>restart;		#Clears variables from memory
>1234 + 4567;	5801	#You can use Maple as you would a regular calculator
$>\frac{5\cdot 6\cdot 9}{3};$	90	
>%;	90	#Recalls the answer from the previous line
$>\frac{\%}{9};$	10	
> $(1+2)(1+2);$	3	#Do not forget the multiplication sign or erroneous answers will appear
> $(1+2)\cdot(1+2);$	9	#The correct way to write the above equation
$>\frac{2}{3};$	$\frac{2}{3}$	#Fractions will appear as fractions
$> evalf\left(\frac{2}{3}\right);$	0.6666666667	#Evaluates the fraction as a floating point number
>Pi;	π	
> <i>evalf</i> (Pi);	3.141592654	#Evaluates Pi as a floating point number
>Pi;	π	
>evalf(%);	3.141592654	<i>#% recalls the answer from the previous line</i>
>exp(1);	e	#Euler's number
>evalf(%);	2.718281828	#% recalls the answer from the previous line
>sqrt(144);	12	#Computes the square root of 144

For more information or to book an appointment

Call: 905.721.8668 ext. 6578 Email: <u>studentlearning@ontariotechu.ca</u> Website: ontariotechu.ca/studentlearning

Simple Expressions and Variables

$>$ <i>Area</i> := Pi· r^2 ;	$Area := \pi r^2$	#Defines the Area of a circle
>r := 10;	<i>r</i> := 10	#Assigns 10 to the variable 'r'
►Area;	100 π	#Computes the Area of a circle
▶evalf(Area);	314.1592654	#Evaluates the Area as a floating point number
> r := 5;	<i>r</i> := 5	#Assigns 5 to the variable 'r'
►Area;	25 π	#Computes the Area of a circle with the new 'r' value
>evalf(Area);	78.53981635	#Evaluates the Area as a floating point number
►Area :='Area';	Area := Area	#Clears data from the 'Area' variable
>Area;	Area	#Displays the Area variable

Advanced Expressions

Defining		
$> y := 2 \cdot x^3 + 5 \cdot x^2;$	$y := 2x^3 + 5x^2$	#Defines the expression $y=2 \cdot x^3 + 5 x^2$
Solving		
>subs(x = 4, y);	208	#Substitutes x=4 and solves for y
>solve(y = 208);	$4, -\frac{13}{4} - \frac{1}{4} \cdot 1\sqrt{247}, -\frac{13}{4} + \frac{1}{4} \cdot 1\sqrt{247}$	#Solves for x when y=208

For more information or to book an appointment

Call: 905.721.8668 ext. 6578 Email: <u>studentlearning@ontariotechu.ca</u> Website: ontariotechu.ca/studentlearning

> <i>fsolve</i> ($y = 208$);	4.	#Solves for x when y=208
		#Uses floating point arithmetic
Differentiating and Integrating	g	
>diff(y,x);	$6x^2 + 10x$	#Differentiates y with respect to x
>diff(y, x, x);	12x + 10	#Second derivative of y with respect to x
>subs(x = 4, diff(y, x));	136	#Value of the first derivative of y with respect to x when x=4
> <i>int</i> (<i>y</i> , <i>x</i>);	$\frac{1}{2}x^4 + \frac{5}{3}x^3$	#Integrates y with respect to x
> <i>integrate</i> ($y, x = 06$);	1008	#Integrates y with respect to x from x=0 to x=6
Plotting		
> $plot(y, x = -69);$		#Plots y vs. x (for a range from -6 to 9)
$>_g := \sin(t);$	$g := \sin(t)$	#Defines the expression $g = sin(t)$
$>h := \cos(t);$	$h := \cos(t)$	#Defines the expression $h = cos(t)$
> $plot(\{g, h\}, t = -3 \cdot Pi 3 \cdot Pi);$		#Plots the expressions, g and h, vs. t (for a range of t=-3Pi to 3Pi)

For more information or to book an appointment

Call: 905.721.8668 ext. 6578 Email: <u>studentlearning@ontariotechu.ca</u> Website: ontariotechu.ca/studentlearning

Limits		
> $limit(g, t=0);$	0	#The limit of g as t approaches 0

Functions

Defining		
$> f := x \to 2 \cdot x^3 + 5 \cdot x^2;$	$f := x \rightarrow 2x^3 + 5x^2$	#Defines the function $f(x) = 2 \cdot x^3 + 5 \cdot x^2$
Solving		
> <i>f</i> (4);	208	#Solves f(4)
>solve(f(x) = 208);	$4, -\frac{13}{4} - \frac{1}{4} \cdot I\sqrt{247}, -\frac{13}{4} + \frac{1}{4} \cdot I\sqrt{247}$	#Solves for x when f(x)=208 #f(x) acts like an expression here
Fisolve(f(x) = 208);	4.	#Solves for x when f(x)=208 #Uses floating point arithmetic
Differentiating and Integr	rating	
> D(<i>f</i>)	$x \rightarrow 6x^2 + 10x$	#First derivative of f(x)
>D(D(f))	$x \rightarrow 12 x + 10$	#Second derivative of f(x)
> D(<i>f</i>)(4);	136	#Value of the first derivative of f(x) when x=4
> <i>int</i> ($f(x), x$);	$\frac{1}{2}x^4 + \frac{5}{3}x^3$	#Integrates f(x) with respect to x#f(x) acts like an expression here
> $int(f(x), x = 06);$	1008	#Integrates f(x) with respect to x from x=0 to x=6

For more information or to book an appointment

Call: 905.721.8668 ext. 6578 Email: <u>studentlearning@ontariotechu.ca</u> Website: ontariotechu.ca/studentlearning

For more information or to book an appointment

Call: 905.721.8668 ext. 6578 Email: <u>studentlearning@ontariotechu.ca</u> Website: ontariotechu.ca/studentlearning

