Linear inequalities

Solving linear inequalities

Solving linear inequalities is similar to solving linear equations except we need to be careful with the direction of the inequality sign. Our solution will be a set of values of x.

$$
\text { Example: } \begin{aligned}
1-2 x & \leq 7 \\
-2 x & \leq 6 \\
\frac{-2 x}{-2} & \geq \frac{6}{-2}
\end{aligned}
$$

$$
x \geq-3 \quad \text { This can be written in interval notation as }[-3, \infty) .
$$

Inequality notation	In words	Interval notation	Line graph
$x<a$	x is less than a	$(-\infty, a)$	$\longleftrightarrow_{a}^{\longrightarrow} x$
$x \leq a$	x is less than or equal to a	$(-\infty, a]$	$\underset{a}{\downarrow} \longleftrightarrow x$
$x>a$	x is greater than a	(a, ∞)	$\underset{a}{\underset{a}{ } \longrightarrow x}$
$x \geq a$	x is greater than or equal to a	$[a, \infty)$	$\underset{a}{t} \longrightarrow x$
$a<x<b$	x is between a and b (exclusive)	(a, b)	$\underset{a}{\rightleftarrows} \xrightarrow{\bullet} x$
$a \leq x \leq b$	x is between a and b (inclusive)	[a, b]	$\underset{a}{\underset{a}{l}} \underset{ }{1} x$
$a<x \leq b$	x is greater than a and less than or equal to b	(a, b]	$\underset{a}{\bullet} \xrightarrow[b]{\mid} \longrightarrow x$
$a \leq x<b$	x is greater than or equal to a and less than b	$[a, b)$	$\underset{a}{\longrightarrow} \longrightarrow x$
Compound Inequalities	AND, the intersection of sets, i.e. contains only elements common to both sets, the overlap	\bigcirc	$x>-3 \text { and } x \leq 0$
	OR, the union of sets i.e. contains all the elements from both sets	U	$\xrightarrow[\text { Solution: }(-\infty, \infty)]{x>-3 \text { or } x \leq 0} x$

Student Learning Centre

