# Empirical Evaluation of Python-based Tools for Distributed Computing on the Raspberry Pi



## Jacob J. Morra and Qusay H. Mahmoud

Department of Electrical, Computer and Software Engineering
University of Ontario Institute of Technology



### Motivation

Benchmarking of Python-based Modules, Libraries, and APIs for Distributed Computing could provide value to a broad community of developers, for the following primary reasons:

- Cost-effective distributed computing in hobbyist communities could benefit from an optimal tool
- Efficiencies gained in run times could be scalable to highly intensive applications in scientific computing

## Research Objective

Using a cluster of Raspberry Pi's as an inexpensive test bench:

- Observe, record, and compare run times for four Python-based Tools Python Remote Objects v4.45 (PyRO),
   Distributed Computing Module v1.0.0 (DCM), Parallel Python v1.6.4.4 (PP), and Mpi4py v2.0.0
- Observe, record, and compare run times for varying distributed cluster sizes (C=1 to C=5)
- Base results around two sets of relatively load-balanced test algorithms
  - 1. Prime Factorization
  - 2. Pi Determination

## Hardware Setup



## **Prime Factorization Results**













- Across five sets of ten run times per tool, DCM consistently exhibits the longest run times for Prime Factorization
- Mpi4py exhibits the shortest run times for Prime Factorization; however, it also yields the greatest variance in results

# Cluster Size Comparison



### Pi Determination Results











- Across four sets of ten run times per tool, PP consistently exhibits the longest run times for Pi Determination
- Mpi4py exhibits the shortest run times for Pi Determination; however, it also yields the greatest variance in results

## Conclusion

## Based on empirical results from the benchmarking tests:

- Mpi4py is recommended as a baseline for the execution of distributed tasks;
- PyRO is recommended as an alternate choice for distributed computing, with benefits over Mpi4py with respect to ease of use, API availability (i.e. DCM), and lower run time variance;

#### **Future Work**

#### The following tasks would be prioritized in future research:

- Performing the same set of benchmarks with more powerful machines, or alternatively with a significantly larger cluster size;
- More testing with alternate C++-based tools or Java-based tools for distributed computing