Health Technology in the Fire Services

Health Technology and Quantifying Health Panel

Michael Williams-Bell, PhD School of Health and Community Services, Durham College Faculty of Health Sciences, UOIT

Futures Forum May 10th, 2017

Engaging the Fire Service in Research

- Partnership created in 2005 (TFS) and 2015 (Durham Region)
- Ongoing research collaborations to improve on-the-job safety
- Develop gaming technologies for assessment and training

What We Know

- Previous collaboration with Toronto Fire on studies of Air Management
- 1/3 of firefighter injuries are due to contact or exposure to fire with many being preventable by better decision making
- Another 1/3 are preventable by improving movement patterns
- ACE facility provides a fantastic simulation environment

How can we improve training and reduce the risk of injury?

Serious Games for Training

- Serious games are video games used for training
- Serious games have been used for cognitive function training under stressful conditions in:
 - Surgeons (Gallagher et al., 2005)
 - Military (Cox et al., 2010)
- Motor learning principles suggest that training can result in implicit learning by developing skills that are more stable under psychological stress (Mullen, 2007)

Current Research Goals

To develop two modules of an interactive serious game to:

- use posture-tracking technology to provide an effective educational and reinforcement tool for fire fighters to learn correct movement patterns and lifting techniques for specific tasks as test
- 2. train complex decision making skills required by firefighters in environments that are both physiologically and psychologically stressful.

Background

 Specifically, the games would provide a means of measuring and training in a physiologically challenging environment.

Current Research 1: Considering Ergonomics

- Partnership with TFS, Durham Region Fire Services, and PSHSA
- In the US, 66% of firefighters experience occupational injuries (Hong et al., 2012)
 - 54% of these injuries are to the back
- Obviously, many firefighting activities are unavoidable and safe lifting considerations are not a top priority
- Initially, our goal was to better understand tasks and activities performed in the fire hall

Lets make fire hall (and truck) tasks safer, so backs are stronger and ready for other activities!

Fire Hall Observations: Tasks in the Fire Hall

On the Fire ground \rightarrow

Using Microsoft Kinect for Human Factors Research

- Microsoft Kinect[™] has the ability to provide real-time anatomical position data in three dimensions (3D)
 - Assessment
 - Training

Current Research 2: Decision Making

- Under potentially life threatening conditions, firefighters are required to:
 - Maintain attention
 - Retain important details (e.g. points of egress)
 - Cognitive components related to decision making (e.g. recognizing smoke patterns)
 - Air Management

How does elevated core temperature affect cognitive function in firefighters?

CANTAB Cognitive Function Tests

How Can We Measure Physiological **UNIVERSITY Demands**?

Human Physiological Monitoring Equipment

Heat Stress and Cognitive Function

- Conducted in UOIT's ACE Climate Chamber
- 19 firefighters from TFS
- Exercise-induced heat Stress on treadmill:
 - Moderate Intensity: 4.5 km/h at 2.5% grade
 - Conditions:
 - 1. 30°C, 50% relative humidity
 - 2. 35 °C, 50% relative humidity

UNIVERSITY

OF ONTARIO

INSTITUTE OF TECHNOLOGY

What Did We Find?

Development of Serious Game INSTITUTE OF TECHNOLOGY

In collaboration with TFS:

- Firefighter Task Level Serious Game (FFTL)
 - Development of a two-storey fire scenario (SME)
 - Story board created for game developers
 - Weekly meetings during development
 - 2 focus groups for SME feedback

FFTL Serious Game

Results: Percent Change in Tasks Completed

Figure 2: Data from the FFTL revealing the percent change of tasks completed. *indicates different from FFTL 1 ($p \le 0.05$)

Next Steps

- Create additional levels of serious game
- Varying levels of difficulty
- Refine scoring/measurement techniques
- Conduct training study

Future Research: Correction of technology Mixed Reality/Immersive Simulation

THANK YOU!