EXPERIMENTAL STUDY OF EFFECT OF ANOLYTE CONCENTRATION AND ELECTRICAL POTENTIAL ON ELECTROLYZER PERFORMANCE IN THERMOCHEMICAL HYDROGEN PRODUCTION USING THE CU-CL CYCLE

Experimental investigation to

Figure 2: PEM Electrolyzer

Rahul Vaghasia¹, Ofelia A. Jianu², Marc A. Rosen¹ ¹Faculty of Engineering and Applied Science, University of Ontario Institute of Technology ²Faculty of Engineering, University of Windsor

Results • The CuCl/HCl electrolysis was conducted for 15 minutes at 25 °C, standard atmospheric pressure (1 atm) and an electric potential range of 0.6 V to 0.9 V. • Following reactions took place in PEM electrolyzer: Oxidation : $Cu^+_{(aq)} \rightarrow Cu^{2+}_{(aq)} + e^-$ Reduction : $H^+_{(aq)} + e^- \rightarrow 0.5 H_{2(g)}$ **Precipitation:** $Cu^{2+}_{(aq)} + 2Cl^{-} \rightarrow CuCl_{(aq)}$ Î 8.0 0.8 of H 0.6 me 0.4 Volui 0.2 Molarity of aqueous HCl (M) ••• • • Volume of H2 produced (mL)

Figure 6: Relation between volume of $H_{2(g)}$ with potential voltage drop and changing molarity of HCI

• Results shows that using a 3.7 M HCI concentration instead of a higher concentration of HCI helps to maximize volume of $H_{2(q)}$ produced at the cost of lower electrical energy consumed.

•Also the copper crossover would be minimal.

Conclusion

• 3.7 M HCl_(aq) is recommended for anolyte mixture. • Using 3.7M HCI_(aq) conc. will avoid the corrosion of electrodes and provides cost-effectiveness solution for membrane.

Future work

• Future enhancements in this work include using different membranes and electrode configurations to avoid copper migration.

 Minimizing the operational cost with an integrated setup for Cu-Cl cycle merits further research.

Acknowledgements

0.25

	1
	0.9 👝
, · A	0.8 2
	0.7 [हु
	0.6 ^t
	0.5 ප්
	0.4
	0.3 Ŭ
	0.2 වි
	0.1 🖾
	0
10	

Laboratoires Nucléaires Canadiens