
MOO-che Out!

Leanna Calla, Dr C. Sean Bohun & Dr Helene LeBlanc

Faculty of Science, University of Ontario Institute of Technology
leanna.calla@uoit.net, sean.bohun@uoit.ca, helene.leblanc@uoit.ca

UNIVERSITY OF ONTARIO
INSTITUTE OF TECHNOLOGY

MOO-che Out!

Leanna Calla, Dr C. Sean Bohun & Dr Helene LeBlanc

Faculty of Science, University of Ontario Institute of Technology
leanna.calla@uoit.net, sean.bohun@uoit.ca, helene.leblanc@uoit.ca

UNIVERSITY OF ONTARIO
INSTITUTE OF TECHNOLOGY

Introduction

Insects, in particular flies, are a nuisance at livestock facilities. One particular species, stable flies, bite cows which can in turn, spread disease, infection, and cause general distress. The presence of stable flies can hinder the economic success of the
particular farm. To manage the fly populations, farmers introduce volatile chemicals both as attractants and as repellents. The following research models the advection/diffusion of these chemical species in a barn as well as predicting the long-term
location of a fly population, based of rudimentary flight behaviour, as a result of this chemical distribution.

Background information

The research for this project began in the Forensic science department at UOIT.
A few components of this research is done by entomologists to set the experi-
mental baseline. A brief summary follows.
•Barn visit - Air samples are taken at the feet of the cows and fly counts are

obtained by setting sticky traps.

•Back at the lab - Volatiles that are common among air samples are identified.
These volatiles are obtained in bulk so that a electroantennogram can be
performed to show the strength of a fly’s response to any particular volatile.

Blasius layer

When there is a cross wind through a barn, a small boundary layer is created
near the ground which develops a vertical velocity profile. This ‘Blasius’ layer
results to resolve a no-slip condition at the floor of the barn. To solve a Blasius
layer the following ordinary differential equation (ODE) must be considered

f ′′′ +
1

2
ff ′′ = 0, f (0) = f ′(0) = 0, f ′(∞) = 1. (1)

Solving this two point boundary value problem is seen in the following fig-
ure, assuming that there is a horizontal velocity of 1 m/s. The velocity must
asymptotically approach this value over a small vertically distance.

Fig. 1: The change in velocity due to the presence of a Blasius layer.

For a barn length of 40 m, with a horizontal velocity of 1 m/s, the Blasius layer
is only about 1 cm thick. Above a few centimetres the velocity is essentially
constant.

Concentration Model

The movement of the volatile chemicals through the barn is modelled with a
conservation law for concentration,

∂c

∂t
+∇ · (~vc) = D∇2c + S, (2)

where S indicates a source. Sources can be either attractive (including cows) or
repulsive and are ideally represented by variously located Dirac delta functions.
To express their finite extent, these are replaced by Gaussians when computing
the numerical solution. Neglecting any advection gives expression (3).
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The air flow through a barn is assumed to be incompressible and due to the
Blasius layer, the vertical component of the velocity is insignificant.

Fig. 2: 6-row with Perimeter feeding

Note: blueprints from http://www.omafra.gov.on.ca/english/engineer/facts/15-015.htm

Concentration Profiles

Concentration: (no advection) If the advection piece is removed, the
PDE becomes for N sources
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Solving this numerically using Chebyshev points, the solution with one source
at the origin (N = 1, ~xi = ~0, σ2

1 = 1) is shown below.

Concentration: (with advection) If advection by wind is considered
only in the x direction, the equation using the incompressibility condition
becomes
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where Ii denotes the strength of the ith source. A final test case illustrates the
solution with two sources. One at the origin and one in the top right corner
of the barn. Beyond this patch the concentration profile does not change.

Fig. 5: 6-row with Perimeter feeding barn floor plan.

Fly Movement

The motion of a fly is governed by the local concentration of volatiles and is
essentially at constant speed. The rate at which the flight path is updated
increases with concentration, to a saturation level. A new direction is chosen
randomly under the following constraints:

•Attractive: −θmax ≤ θ ≤ θmax with θmax decreasing from π/2 to zero with
concentration. θ → 0 as conc.→∞.

•Repulsive: θmax ≤ θ ≤ π/2 or −π/2 ≤ θ ≤ −θmax with θmax increasing
from zero to π/2 with concentration. θ → ±π/2 as conc.→∞.
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Proof of concept: The figures below shows the movement of an individual
fly and a collection of 1000 flies with a small Gaussian concentration profile.

Fig. 7: Fly Movement test: left to right- single fly in the presence of an attractive concentration, many flies

in attractive, single fly in the presence of repulsive, many flies in repulsive.

The heat maps show the average number of visits to a particular grid point
with 1000 flies released from a uniform distribution from the barn wall. The
following figure shows heat maps when many flies are released from various
locations.

Fig. 8: Left: Many flies in the presence of an attractive source. Right: Many flies in the presence of a

repulsive source.

With Concentration profile: Concentration profiles that include ad-
vection follow.

Fig. 9: Left to right: Attractive profile present, repulsive profile present, heat map of fly locations subject to

the concentration profiles.
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